3.7 KiB
3.7 KiB
version: '3'
services:
elasticsearch:
image: swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/docker.elastic.co/elasticsearch/elasticsearch:7.17.28
container_name: skw-es
environment:
- discovery.type=single-node
- bootstrap.memory_lock=true
- "ES_JAVA_OPTS=-Xms2g -Xmx2g"
ulimits:
memlock:
soft: -1
hard: -1
ports:
- "39876:9200"
volumes:
- /home/ss/vllm-py12/skw-es:/usr/share/elasticsearch/data
oap:
image: swr.cn-north-4.myhuaweicloud.com/ddn-k8s/skywalking.docker.scarf.sh/apache/skywalking-oap-server:9.5.0
container_name: skw-oap
depends_on:
- elasticsearch
links:
- elasticsearch
restart: always
ports:
- "38740:11800"
- "34579:12800"
environment:
SW_STORAGE: elasticsearch
SW_STORAGE_ES_CLUSTER_NODES: elasticsearch:39876
SW_HEALTH_CHECKER: default
JAVA_OPTS: "-Xms2g -Xmx2g"
ui:
image: swr.cn-north-4.myhuaweicloud.com/ddn-k8s/skywalking.docker.scarf.sh/apache/skywalking-ui:9.5.0
container_name: skw-ui
depends_on:
- oap
links:
- oap
restart: always
ports:
- "37658:8080"
environment:
SW_OAP_ADDRESS: http://oap:34579
# 因清华大学开源镜像站 HTTP/403 换了中科大的镜像站,配置信息存放在这里
cat /etc/apt/sources.list
# 安装 openssh 端口号是默认的 22 没有修改
sudo apt install openssh-server -y
sudo systemctl enable ssh
sudo systemctl start ssh
# 安装 NVDIA 显卡驱动和
wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2404/x86_64/cuda-keyring_1.1-1_all.deb
sudo dpkg -i cuda-keyring_1.1-1_all.deb
sudo apt-get update
sudo apt-get -y install cuda-toolkit-12-8
sudo apt-get install -y cuda-drivers
nvidia-smi
# 安装 nvidia-cuda-toolkit
apt install nvidia-cuda-toolkit
nvcc -V
# 创建了一个新的目录,用于存储 vllm 使用的模型或其他文件
mkdir /home/ss/vllm-py12 && cd /home/ss/vllm-py12
# 用 conda 建了个新环境,以下 pip install 都是在该环境执行的
conda create -n vllm-py12 python=3.12 -y
conda activate vllm-py12
# 安装 vllm
pip install vllm -i http://mirrors.cloud.tencent.com/pypi/simple --extra-index-url https://download.pytorch.org/whl/cu128
# 安装 modelscope
pip install modelscope -i https://mirrors.aliyun.com/pypi/simple/ --trusted-host mirrors.aliyun.com
# 拉取 gpt-oss-20b 模型,由于显存不足,运行失败了
modelscope download --model openai-mirror/gpt-oss-20b --local_dir /home/ss/vllm-py12/gpt-oss-20b
# 下载了 Qwen3-0.6B
modelscope download --model Qwen/Qwen3-0.6B --local_dir /home/ss/vllm-py12/qwen3-06b
# 运行 Qwen3-0.6B
nohup vllm serve /home/ss/vllm-py12/qwen3-06b \
--host 0.0.0.0 \
--port 8000 \
--served-model-name Qwen3-0.6B \
--tensor-parallel-size 1 \
--dtype auto \
--gpu-memory-utilization 0.9 \
--max-model-len 32768 \
--trust-remote-code \
>> /home/ss/vllm-py12/vllm.log 2>&1 \
& echo $! > /home/ss/vllm-py12/vllm.pid
# 安装了抓包工具 tshark 和 ngrep
sudo apt install ngrep
sudo apt-get install tshark
# 通过 java 脚本调用 tshark 提取关键日志
sudo nohup bash /home/ss/vllm-py12/tshark_bash.sh >> /home/ss/vllm-py12/tshark_bash.log 2>&1 & echo $! > /home/ss/vllm-py12/tshark_bash.pid
# 运行了1个定时任务脚本,清理 tshark 的临时文件并重启 java 脚本
sudo nohup /home/ss/vllm-py12/timer_bash.sh > /home/ss/vllm-py12/timer_bash.log 2>&1 & echo $! > /home/ss/vllm-py12/timer_bash.pid
# 杀死上面2个进程的命令
sudo kill -9 $(cat /home/ss/vllm-py12/timer_bash.pid)
sudo kill -9 $(cat /home/ss/vllm-py12/tshark_bash.pid)
# 清理日志
cd /home/ss/vllm-py12 && rm -rf timer_bash.log tshark_bash.log shark.log