4.0 KiB
4.0 KiB
RTX4090笔电操作记录
# 因清华大学开源镜像站 HTTP/403 换了中科大的镜像站,配置信息存放在这里
cat /etc/apt/sources.list
# 安装 openssh 端口号是默认的 22 没有修改
sudo apt install openssh-server -y
sudo systemctl enable ssh
sudo systemctl start ssh
# 安装 NVDIA 显卡驱动和
wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2404/x86_64/cuda-keyring_1.1-1_all.deb
sudo dpkg -i cuda-keyring_1.1-1_all.deb
sudo apt-get update
sudo apt-get -y install cuda-toolkit-12-8
sudo apt-get install -y cuda-drivers
nvidia-smi
# 安装 nvidia-cuda-toolkit
apt install nvidia-cuda-toolkit
nvcc -V
# 创建了一个新的目录,用于存储 vllm 使用的模型或其他文件
mkdir /home/ss/vllm-py12 && cd /home/ss/vllm-py12
# 用 conda 建了个新环境,以下 pip install 都是在该环境执行的
conda create -n vllm-py12 python=3.12 -y
conda activate vllm-py12
# 安装 vllm
pip install vllm -i http://mirrors.cloud.tencent.com/pypi/simple --extra-index-url https://download.pytorch.org/whl/cu128
# 安装 modelscope
pip install modelscope -i https://mirrors.aliyun.com/pypi/simple/ --trusted-host mirrors.aliyun.com
# 拉取 gpt-oss-20b 模型
modelscope download --model openai-mirror/gpt-oss-20b --local_dir /home/ss/vllm-py12/gpt-oss-20b
# 运行 gpt-oss-20b 模型失败,移动端的 RTX4090 只有 16GB 显存,至少需要 16~24GB 显存
vllm serve \
/home/ss/vllm-py12/gpt-oss-20b \
--port 18777 \
--api-key token_lcfc \
--served-model-name gpt-oss-20b \
--gpu-memory-utilization 0.95 \
--tool-call-parser openai \
--enable-auto-tool-choice
# Qwen3-8b 也需要 16~24GB显存,所以下载了 Qwen3-0.6B
modelscope download --model Qwen/Qwen3-0.6B --local_dir /home/ss/vllm-py12/qwen3-06b
# 运行 Qwen3-8b
vllm serve /home/ss/vllm-py12/qwen3-06b \
--host 0.0.0.0 \
--port 8000 \
--served-model-name Qwen3-0.6B \
--tensor-parallel-size 1 \
--dtype auto \
--gpu-memory-utilization 0.9 \
--max-model-len 32768 \
--trust-remote-code
新建了一个脚本去测试结构化输出函数的bug
vim /home/ss/vllm-py12/vllm-crash-test.py
from enum import Enum
from pydantic import BaseModel
from vllm import LLM, SamplingParams
from vllm.sampling_params import GuidedDecodingParams
# 定义结构化输出 schema
class CarType(str, Enum):
sedan = "sedan"
suv = "SUV"
truck = "Truck"
coupe = "Coupe"
class CarDescription(BaseModel):
brand: str
model: str
car_type: CarType
# 获取 JSON schema
json_schema = CarDescription.model_json_schema()
# 设置 prompt
prompt = (
"Generate a JSON with the brand, model and car_type of "
"the most iconic car from the 90's"
)
def format_output(title: str, output: str):
print(f"{'-' * 50}\n{title}: {output}\n{'-' * 50}")
def main():
# 1. 初始化本地 LLM,加载本地模型文件
llm = LLM(
model="/home/ss/vllm-py12/qwen3-06b", # 指向你的本地模型路径
max_model_len=1024,
enable_prefix_caching=True,
gpu_memory_utilization=0.9,
)
# 2. 构造一个无效的 guided_decoding:没有任何有效字段
# 这将导致 get_structured_output_key() 中 raise ValueError
guided_decoding_invalid = GuidedDecodingParams(
json=None,
json_object=False,
regex=None,
choice=None,
grammar=None,
structural_tag=None
)
sampling_params = SamplingParams(
temperature=0.0,
max_tokens=512,
guided_decoding=guided_decoding_invalid # ✅ 传入但无有效字段
)
# 3. 生成输出(预期会触发 ValueError)
try:
outputs = llm.generate(prompts=prompt, sampling_params=sampling_params)
for output in outputs:
generated_text = output.outputs[0].text
format_output("Output", generated_text)
except Exception as e:
print(f"Caught expected error: {e}")
if __name__ == "__main__":
main()
复现
python /home/ss/vllm-py12/vllm-crash-test.py